277 research outputs found

    High speed collision and reconnection of Abelian Higgs strings in the deep type-II regime

    Get PDF
    We study high speed collision and reconnection of cosmic strings in the type-II regime (scalar-to-gauge mass ratios larger than one) of the Abelian Higgs model. New phenomena such as multiple reconnections and clustering of small scale structure have been observed and reported in a previous paper, as well as the fact that the previously observed loop that mediates the second intercommutation is only a loop for sufficiently large beta = m_scalar^2/m_gauge^2. Here we give a more detailed account of our study, involving 3D numerical simulations with beta in the range 1 to 64, the largest value simulated to date, as well as 2D simulations of vortex-antivortex (v-av) collisions to understand the possible relation to the new 3D phenomena. Our simulations give further support to the idea that Abelian Higgs strings never pass through each other, unless this is the result of a double reconnection; and that the critical velocity (v_c) for double reconnection goes down with increasing mass ratio, but energy conservation suggests a lower bound around 0.77c. We discuss the qualitative change in the intermediate state observed for large mass ratios. We relate it to a similar change in the outcome of 2D v-av collisions in the form of radiating bound states. In the deep type-II regime the angular dependence of v_c for double reconnection does not seem to conform to semi-analytic predictions based on the Nambu-Goto approximation. We model the high angle collisions reasonably well by incorporating the effect of core interactions, and the torque they produce on the approaching strings, into the Nambu-Goto description of the collision. An interesting, counterintuitive aspect is that the effective collision angle is smaller because of the torque. Our results suggest differences in network evolution and radiation output with respect to the predictions based on Nambu-Goto or beta = 1 Abelian Higgs dynamics.Comment: 13 pages, 7 figures Send For Publication in Physics Review

    The string swampland constraints require multi-field inflation

    Full text link
    An important unsolved problem that affects practically all attempts to connect string theory to cosmology and phenomenology is how to distinguish effective field theories belonging to the string landscape from those that are not consistent with a quantum theory of gravity at high energies (the "string swampland"). It was recently proposed that potentials of the string landscape must satisfy at least two conditions, the "swampland criteria", that severely restrict the types of cosmological dynamics they can sustain. The first criterion states that the (multi-field) effective field theory description is only valid over a field displacement Δϕ≀Δ∌O(1)\Delta \phi \leq \Delta \sim \mathcal O(1) (in units where the Planck mass is 1), measured as a distance in the target space geometry. A second, more recent, criterion asserts that, whenever the potential VV is positive, its slope must be bounded from below, and suggests ∣∇V∣/V≄c∌O(1)|\nabla V| / V \geq c \sim \mathcal O(1). A recent analysis concluded that these two conditions taken together practically rule out slow-roll models of inflation. In this note we show that the two conditions rule out inflationary backgrounds that follow geodesic trajectories in field space, but not those following curved, non-geodesic, trajectories (which are parametrized by a non-vanishing bending rate Ω\Omega of the multi-field trajectory). We derive a universal lower bound on Ω\Omega (relative to the Hubble parameter HH) as a function of Δ,c\Delta, c and the number of efolds NeN_e, assumed to be at least of order 60. If later studies confirm cc and Δ\Delta to be strictly O(1)\mathcal O(1), the bound implies strong turns with Ω/H≄3Ne∌180\Omega / H \geq 3 N_e \sim 180. Slow-roll inflation in the landscape is not ruled out, but it is strongly multi-field.Comment: v1: 15 pages; v2: 16 pages, references added, improved discussions, version accepted for publication in JCA

    Lineal gravity from planar gravity

    Full text link
    We show how to obtain the two-dimensional black hole action by dimensional reduction of the three-dimensional Einstein action with a non-zero cosmological constant. Starting from the Chern-Simons formulation of 2+1 gravity, we obtain the 1+1 dimensional gauge formulation given by Verlinde. Remarkably, the proposed reduction shares the relevant features of the formulation of Cangemi and Jackiw, without the need for a central charge in the algebra. We show how the Lagrange multipliersin these formulations appear naturally as the remnants of the three dimensional connection associated to symmetries that have been lostin the dimensional reduction. The proposed dimensional reduction involves a shift in the three dimensional connection whose effect is to make the length of the extra dimension infinite.Comment: 13 pages, plain Te

    Comment on ``Absence of abelian Higgs hair for extremal black holes''

    Full text link
    We examine the claim of Chamblin et. al. that extreme black holes cannot support abelian Higgs hair. We provide evidence that contradicts this claim and discuss reasons for this discrepancy.Comment: 1 page 2 figures, revised titl

    Reply to "Comment on 'Gravitating Magnetic Monopole in the Global Monopole Spacetime' "

    Full text link
    In this Reply I present some arguments in favor of the stability of the topological defect composed by global and magnetic monopoles.Comment: 1 page, no figures. Revised version improves the theoretical analysis about electrostatic self-interaction in the global monopole spacetim

    Exotic composites: the decay of deficit angles in global-local monopoles

    Full text link
    We study static, spherically symmetric, composite global-local monopoles with a direct interaction term between the two sectors in the regime where the interaction potential is large. At some critical coupling the global defect disappears and with it the deficit angle of the space-time. We find new solutions which represent local monopoles in an Anti-de-Sitter spacetime. In another parameter range the magnetic monopole, or even both, disappear. The decay of the magnetic monopole is accompanied by a dynamical transition from the higgsed phase to the gauge-symmetric phase. We comment on the applications to cosmology, topological inflation and braneworlds.Comment: 17 pages, 11 figures; Minor corrections, matches published versio

    Cumulative effects in inflation with ultra-light entropy modes

    Get PDF
    In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless ("ultralight") while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressing the isocurvature component. We identify a Stuckelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e-folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.Comment: 27 pages, 1 figure; v2: improved discussions, version published in JCA

    Nielsen-Olesen strings in Supersymmetric models

    Get PDF
    We investigate the behaviour of a model with two oppositely charged scalar fields. In the Bogomol'nyi limit this may be seen as the scalar sector of N=1 supersymmetric QED, and it has been shown that cosmic strings form. We examine numerically the model out of the Bogomol'nyi limit, and show that this remains the case. We then add supersymmetry-breaking mass terms to the supersymmetric model, and show that strings still survive. Finally we consider the extension to N=2 supersymmetry with supersymmetry-breaking mass terms, and show that this leads to the formation of stable cosmic strings, unlike in the unbroken case.Comment: 7 pages, 2 figues, uses revtex4; minor typos corrected; references adde

    Effective non-intercommutation of local cosmic strings at high collision speeds

    Get PDF
    We present evidence that Abrikosov-Nielsen-Olesen (ANO) strings pass through each other for very high speeds of approach due to a double intercommutation. In near-perpendicular collisions numerical simulations give threshold speeds bounded above by ∌0.97c\sim 0.97 c for type I, and by ∌0.90c\sim 0.90 c for deep type II strings. The second intercommutation occurs because at ultra high collision speeds, the connecting segments formed by the first intercommutation are nearly static and almost antiparallel, which gives them time to interact and annihilate. A simple model explains the rough features of the threshold velocity dependence with the incidence angle. For deep type II strings and large incidence angles a second effect becomes dominant, the formation of a loop that catches up with the interpolating segments. The loop is related to the observed vortex - antivortex reemergence in two-dimensions. In this case the critical value for double intercommutation can become much lower.Comment: 5 pages, 4 figures. data points added, plots for deep type II regime showing lower critical velocities, some minor changes in tex
    • 

    corecore